Creating a Voyager Thermal Model 39 Years Into the Flight Mission, Along With Model Correlation and Application

ICES Paper 2018-134

William C. Ledeboer

© 2018 California Institute of Technology U.S. Government Sponsorship Acknowledged

Agenda

- Introduction
- Mission Overview / Running Out of Power...
- Propulsion Module Subsystem (PMS) Thermal Design
- Approach to Building Model / Model Development
- Model Correlation
- Application to Voyager Flight Operations
- Conclusions / Lessons Learned

Introduction

- 41-year old Voyager spacecraft are running out of power.
- To preserve the mission and continue science, hard choices need to be made.

- How to keep the propellant lines from freezing?
- How to model a spacecraft from scratch?
- How to correlate a spacecraft model without test data?
- This paper tells the story of how these goals were and are being met.

Mission Overview

The Voyager spacecraft, each carrying 10 science instruments were launched 41 years ago to explore the outer planets and beyond...

Instrument List

- 'BUS' Housing Electronics
- Cosmic Ray Subsystem (CRS)
- High-Gain Antenna
- Imaging Science Subsystem (ISS)
- Infrared Interferometer Spectrometer and Radiometer (IRIS)
- Low-Energy Charged Particles (LECP)
- Magnetometer (MAG)
- Optical Calibration Target
- Photopolarimeter Subsystem (PPS)
- Planetary Radio Astronomy (PRA)
- Plasma Science (PLS)
- Plasma Wave Subsystem (PWS)
- Radioisotope Thermoelectric Generators (RTG)
- Ultraviolet Spectrometer (UVS)

Running Out of Power...

- Each spacecraft carries three Radioisotope Thermoelectric Generators (RTGs).
- These power all of the on-board science and engineering functions.
- As the graph shows, by Fall of 2020 the Voyager 2 (S/C 32) power margin will have dropped to 2 W.
- For the mission to continue, some function(s) must be turned off before the power margin gets that low.

¹ PSTAT is software used to calculate RTG power from telemetry.

Propulsion Module Subsystem (PMS) Thermal Design

- Fuel Tank positioned at center of spacecraft bus.
- Blow-down monopropellant (hydrazine) flows through stainless steel lines, filters and valves to reach each of the 16 thruster/valve assemblies (T/VAs).

Propellant lines routed in-plane, directly beneath spacecraft bus.

Challenges of Building Model From Scratch

- No pre-existing model in digital form.
- 237 drawings were scanned from Vellum File paper drawing archives into PDF format.
- Many photographs of the full-size Voyager model in von Karman auditorium at JPL were also used as guides for building the thermal model.

Thermal Model Development

Table 2. Spacecraft System Drawing Parts List (included in TMM)

(included in Tivivi)						
Description	Rationale					
THERMAL CONTROL	Includes all louvers, MLI blankets,					
INSTALLATION	RHUs, shields and shades on the					
	spacecraft.					
RTG INSTALLATION	Radiative interface seen by the bus,					
	MLI on that side of the spacecraft,					
	and louvers. Only external					
	geometry of RTGs modeled.					
	Telemetry of RTG case					
	temperatures used as a boundary					
	condition in model.					
ANTENNA	Also required for accurate radiative					
INSTALLATION	and conductive interface.					
SPACECRAFT	Includes Bus and hardware attached					
ASSEMBLY	to bus, plus TCAPU and truss.					

These items were selected for inclusion in the model as they were deemed essential to calculating accurate propellant line temperatures.

Thermal Model Development (cont.)

- The initial correlated thermal model was delivered to the Voyager project in October 2015.
- Over the following year, various refinements
 were added to the model, including detailed
 verification of the propellant line geometry aided
 by photographs of the flight spare Trajectory
 Correction/Attitude Propulsion Unit (TCAPU),
 updating the thruster thermal model and adding
 labeling of the individual Thermal Desktop
 elements, consistent with nomenclature from the
 drawings.

Thermal Model Development (cont.)

Propellant Line "cladding" (from TCAPU Installation Drawing)

Bonding aluminum 1100-0 alloy bar to stainless steel line increased thermal conductance by >30X near thruster inlets

Platinum Resistance Thermometer (PRT) (Flight Sensor on +Yaw Thruster Bracket)

Completed Thermal Desktop Model

1,177 surfaces and thin-shell elements 4,543 nodes

Model Correlation / Dataset Selection

- With limited thermal vacuum test data, not representative of current environment, we searched for relatively recent, steady-state flight data to use for model correlation.
- We settled on HOT and COLD cases, both from 2014, although the "hot" condition represented only a 9% increase in bus power dissipation over the "cold" case (212 W vs. 195 W).
- Choice of 2014 datasets ensured model would be correlated in a consistent fashion to the current environment (i.e. no significant solar or planetary heating).

Model Correlation

 Model correlation was achieved by adding small heat loads close to the +Yaw thruster bracket (0.02 W) and ±Pitch thruster bracket (0.06 W) to get propellant line temperature predictions to match limited flight data (only 2 sensors directly mounted on propellant lines).

Thermal Model Correlation (Final Results)

Correlated model matched steady-state flight temperature telemetry data for HOT & COLD cases within 5°C.

		2014-343	2014-247				
		XB-LO, GYON	XB-HI, GYOFF				
		HOT CASE	COLD CASE	HOT CASE	COLD CASE	HOT CASE	COLD CASE
		Flight Data	Flight Data	Predictions	Predictions	Delta [°C]	Delta [°C]
	Description	[°C]	[°C]	[°C]	[°C]	TMM-Flt	TMM-Flt
	Bay 1 Temp	25.8	23.7	24.2	22.6	-1.6	-1.1
	Bay 2 Temp	17.6	14.1	19.0	17.3	1.4	3.2
	Bay 3 Temp	15.4	11.9	18.8	16.9	3.4	5.0
	Bay 4 Temp	13.3	9.7	15.8	13.6	2.5	3.9
Duc	Bay 5 Temp	23.4	18.5	22.9	20.7	-0.5	2.2
Bus	Bay 6 Temp	25.4	16.9	24.1	15.9	-1.3	-1.0
	Bay 7 Temp	20.3	20.3	19.8	19.0	-0.5	-1.3
	Bay 8 Temp	13.8	10.3	14.9	11.9	1.1	1.6
	Bay 9 Temp	18.0	13.8	18.6	14.5	0.6	0.7
l	Bay 10 Temp	21.1	19.0	21.8	19.0	0.7	0.0
ſ	TCAPU Surface Temp 1	20.5	14.9	18.6	18.7	-1.9	3.9
	TCAPU Surface Temp 2	25.0	20.1	25.6	24.6	0.6	4.5
DIAC	TCAPU Tank Temp 1	15.4	12.6	12.2	9.0	-3.2	-3.6
PMS	TCAPU Tank Temp 2	14.8	12.7	11.0	8.0	-3.8	-4.6
	TCAPU Feed System Temp 1	12.0	8.5	11.1	9.6	-0.9	1.1
	TCAPU Feed System Temp 2	22.0	17.8	17.9	17.0	-4.1	-0.8

Application to Voyager Flight Operations

- Engineering maneuvers
 - Acquisition Sun sensor Calibration (ASCAL)
 - Thermal Tests
 - Model used to bound excursions of both bus and PMS temperatures during transient activities/tests.
- Science maneuvers
 - Magnetometer Calibration (MAGROL)
 - 2 revolutions about spacecraft Z-axis
 - Performed 2-4 times per year

Application to Voyager Flight Operations (cont.)

- Predictions for decreasing power margin in baseline power state.
- Assessment of proposed changes in steady-state power configuration (e.g. Turning off Digital Tape Recorder (DTR) in Bay 2).

Conclusions / Lessons Learned

- Resources needed to create model from scratch are inversely proportional to data available.
- Good thermal design is essential for mission longevity.
- Investment in archiving project data pays off the longer the mission is extended.
- Correlating a thermal model to flight data when very limited (and possibly ambiguous) test data is available <u>can be done</u>.
- Power and thermal constraints must now be considered in maintaining Voyager spacecraft health and the ability to collect valuable science data.

Acknowledgments

The author would like to acknowledge the following people for their contributions to the development of this thermal model:

- Suzanne Dodd, JPL, Voyager Project Manager.
- Gary Kinsella, JPL, for supervising and guiding this work.
- Art Avila, JPL, for contributing history of Voyager thermal subsystem.
- Larry Chan, ASL, for implementing the thermal model in Thermal Desktop.
- Dr. Siu-Chun Lee, ASL, Chief Executive Officer (CEO).
- Gordy Cucullu, Mike Pauken and Josh Kempenaar, JPL, for their review and critique of the model.
- Juan Villalvazo, JPL, for his review and validation of the model.
- Fernando Peralta, JPL, Voyager Mission Operations Engineer
- Enrique Medina, JPL, Voyager Spacecraft Guidance & Control Engineer
- Danielle Medina, JPL Institutional Documentation Specialist for supplying all requested drawings from JPL Vellum Files
- David Klein, JPL Assets/Storage for notification regarding TCAPU S/N 3.

This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

